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The Belousov-Zhabotinskyi reaction is governed by very complex chemical kinetics involving at least 20
species. Nevertheless, there are many results that suggest that such a reaction could be described by a 3D
model. For instance, in the special case when the asymptotic behavior is close to a homoclinic orbit, a 3D
normal-form model has been previously proposed. Rather than deriving such a model, which requiring prior
knowledge about the dynamics, a 3D model is here obtained by using a global vector field reconstruction
technique starting from the measured time dependence of [CeIV]. This reconstructed model is hereafter validated
by comparing the topological properties of the associated attractor to the ones directly reconstructed from the
time series by using derivative coordinates. Indeed, the template characterizing the reconstructed model is
compatible with the one extracted from the data. Nevertheless, it is found to be not compatible with the
template associated with the normal-form model, which does not generate trajectories close enough to the
experimental ones. Consequently, the topological properties of the underlying dynamics are not well captured
by the normal-form model.

1. Introduction

Experimental observations of oscillations in chemically
reacting systems date back at least to the 1950s, but the actual
growth of interest in the subject occurred with the paper by
Zhabotinskii in 1964.1 First, the most interesting phenomena
that occur in bromate ion driven chemical oscillations whose
mechanism was elucidated in 1972 by Field et al2 have played
a critical role in the development of solution-phase oscillating
chemical reactions. The discovery by Belousov3 of the cerium
ion catalyzed oxidation and bromination of citric acid by BrO3

-,
marked the beginning of the modern era of research in the topic.
The work by Belousov was extended by Zhabotinskii.1 The
systems based on either the cerous/ceric or on the ferroin/ferric
redox couples with malonic acid are of particular interest and
received the name of these investigators. Second, the observa-
tions and investigations of chaotic behaviors in chemical
reactions4 lead to the conclusion that nonperiodic behaviors
genuinely arise from the nonlinear nature of deterministic
systems rather than from a noisy behavior produced by random
driving forces.

The mechanism of the Belousov-Zhabotinskyi (BZ) reaction
elucidated by Field et al2 and further elaborated5 involves more
than 20 species and is slaved however to a few species. Hence,
it has been possible to develop a reduced model given by
reactions with nine intermediate species including an oxidized
derivative (R) of malonic acid (MA), an inert organic product
(P), and bromomalonic acid (BrMA). The concentrations of both
bromate and cerous ions are assumed to be constant in the
reactor, and only the input flow of Br is taken into account in
the calculations.6 This model was shown to be sufficient to
qualitatively reproduce the main features of the BZ-reaction.7

Explicitly, this model reads

Reactions R1-R9 translate into a system of seven ordinary
differential equations, which when simulated on a computer,
yields a bifurcation diagram similar to the one experimentally
observed.7 The model (R1-R9), which may be reduced to a
seven-variable model, shows that chaos indeed occurs in the
neighborhood of the transitions between different periodic
states.6,8 All the strange attractors that have been studied,
obtained from both simulations and experiments, can be
embedded in a tridimensional space.6-11

Moreover, an analysis in normal forms, which leads to the
simplest nonlinear equations describing bifurcations, demon-

BrO3
- + Br- + 2H+ f HBrO2 + HOBr (R1)

HBrO2 + Br- + H+ f 2HOBr (R2)

HOBr + Br- + H+ f Br2 + H2O (R3)

BrO3
- + HBrO2 + H+ T 2BrO2 + H2O (R4)

2HBrO2 f BrO3
- + HOBr + H+ (R5)

BrO2 + Ce3+ + H+ f HBrO2 + Ce4+ (R6)

HOBr + MA f BrMA + H2O (R7)

BrMA + Ce4+ f Br- + R + Ce3+ + H+ (R8)

R + Ce4+ f Ce3+ + P (R9)
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strated that a system of coupled differential equations with only
three variables can describe most of the dynamics found in the
BZ reaction, including quasiperiodicity and large- and small-
scale chaos.8 This model will be called the normal-form model
(NF model) in this paper. Thus, a reduction of the original
Field-Körös-Noyes scheme involving 20 species to a three-
variable skeletal mechanism appears to be justified. The three-
variable NF model reproduces the interaction between a Hopf
bifurcation and a homoclinic bifurcation as experimentally
observed.7 Nevertheless, by a simple visual inspection of phase
portraits, it appears that such a low-dimensional model does
not capture the dynamics of the experiments with sufficient
accuracy. The aim of this paper is therefore to provide a three-
variable model for the BZ reaction that reproduces in a better
way the experimental data. This new model will be obtained
by using a global vector field reconstruction technique that
extracts, rather automatically, a set of ordinary differential
equations from the data. Also, by using a topological charac-
terization, we will show that the model allows one to investigate
the fine structure of the dynamics, which is not easily available
from the experimental data.

This work provides a new contribution to the important
problem of the modeling and topological analysis of data. Such
an analysis has been previously achieved in the case of a copper
electrodissolution, where the dynamics was found to be
governed by a horseshoe dynamics.12 Brown et al13 also
proposed an analysis using a similar technique on data generated
by string experiments, a BZ reaction, and an electronic circuit,
which are also governed by a horseshoe dynamics, except for
the electronic circuit whose topological properties exhibit a more
complicated dynamics as discussed in ref 14. In the present case,
the asymptotic behavior is close to a homoclinic orbit, which
induces a very complex attractor. Such a dynamical behavior
is especially difficult to analyze. In particular, it is not so easy
to obtain a reconstructed model compared with simpler cases
characterized by a horseshoe dynamics since oscillations with
two different time scales are now involved in the process.

The paper is organized as follows. Section 2 is devoted to
the analysis of experimental data. Basic concepts of topological
characterization are also introduced. A reconstructed model,
obtained using a global vector field reconstruction technique,
is found to be in a good agreement with the dynamics underlying
the low-amplitude oscillations (Section 3). In section 4, the NF
model is rejected since its topological characterization provides
a template not compatible with the one extracted from the data.
Section 5 is a conclusion.

2. Analysis of the Experimental Data

A. Experiments. The Belousov-Zhabotinskyi reaction is
performed in an open, continuously stirred tank reactor (27 mL
volume) fed by three feed lines:18

The three fluxes are maintained nearly equal by using a
peristaltic pump. The flow rate through the reactor (æ) plays

the role of the control parameter; for the present analysis, it is
fixed to 0.130 mL mn-1. The dynamics is monitored by
measuring the absorbance of the solution at 360 nm. The stirring
rate is 600 rpm, while the temperature is regulated to 41°C.
The time dependence of [CeIV] is recorded, and a part of the
time series is displayed in Figure 1. The time series is recorded
during a 20 h experiment. Beyond this time, experimental drifts
are unavoidable. To prevent our analysis from being spoiled
by this drift, the linear drift whose slope is found to be equal to
0.000 114 5 is removed before data processing. The noise
contamination is also partially removed by using a Fourier
transform. Of course, it remains possible that drifts on shorter
time scales affect the dynamics, but as it is not easily
identifiable, such short drifts are considered as a part of the
dynamics studied.

B. Template Extraction from the Data. As discussed in
the Introduction, many works point to the fact that the dynamics
of the BZ reaction can be embedded in a tridimensional space,
implying that a 3D model should be sufficient to accurately
describe the dynamical behavior of this chemical reaction.
Following a theorem by Takens,15 it is possible to obtain a
reconstruction of the phase space starting from a scalar time
series by using time delay coordinates or derivative coordinates.
Principal components16 may also be equivalently used since
Gibson et al17 demonstrated that these three kinds of coordinates
are equivalent. In the present case, we prefer to use the derivative
coordinates, which will then later allow a direct comparison
with the phase portrait obtained by integrating a model extracted
from the experimental data by using a global vector field
reconstruction technique (see section 3). Consequently, a phase
space spanned by the time seriesX(t) ) [Ce4+(t)] and its two
first time derivatives,Y ) Ẋ andZ ) Ẍ, is used to investigate
the topological properties of the underlying dynamics. A plane
projection of the reconstructed phase space is displayed in Figure
2.

first line: [NaBrO3] ) 7.5× 10-3 mol L-1;

[H2 SO4] ) 1.5 N

second line: [CH2 (COOH)2] ) 0.15 mol L-1;

[H2SO4] ) 1.5 N

third line: [Ce2 (SO4)3] ) 5 × 10-4 mol L-1;

[H2SO4] ) 1.5 N

Figure 1. Time evolution of [CeIV] in the case of homoclinic chaos
evidenced in the BZ experiments.

Figure 2. Phase space projection obtained by using derivative
coordinates from the experimental time series.
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The trajectory recurrently returns to the vicinity of the saddle
focus and close enough to it in such a way that the chaotic
attractor does not contain any significant central hole, in contrast
to the chaotic behavior studied by Mindlin et al11 or by Brown
et al.13 Indeed, a homoclinic reinjection process to the neighbor-
hood of an underlying saddle focus has been reported.18

A first-return map to a Poincare´ section is afterward
computed. As a result of the lack of a significant hole in the
middle of the attractor, we cannot claim that this return map is
very accurate. Furthermore, despite the large recording time
during the experiments, only 266 points are found in the
Poincare´ section with only a few of them with large amplitude
oscillations. Nevertheless, two (not well visited) monotonic
branches may be exhibited (Figure 3). Each monotonic branch
is labeled by an integer allowing one to encode periodic orbits
by symbolic sequences, namely 0 for the increasing branch and
1 for the decreasing branch.

The extraction and coding of periodic orbits is a step in the
topological characterization of the attractor. Periodic orbits are
extracted by Newton-Raphson iterations scheme to identify
close returns. Again, as a result of the lack of a significant hole
in the middle of the attractor, this step is not as easy as usual.
Furthermore, a partially inadequate embedding is unfortunately
obtained from the time series since many spurious and ambigu-
ous crossings occur in the neighborhood of the fixed point where
the noise contamination degrades the observability of the
dynamical structure. It therefore appears difficult to accurately
count oriented crossings required for estimating linking numbers
between pairs of periodic orbits, as required for a refined
topological characterization.19,20In addition, the trajectory does
not visit the monotonic branches of the first-return map well
enough (Figure 3), leading to difficulties in extracting the
population of periodic orbits in a complete reliable way.
Notwithstanding these problems, we have been nevertheless able
to produce the results displayed in Table 1, to be again discussed
later.

It is well-known that a chaotic attractor is structured around
a skeleton of periodic orbits. In particular, the idea has arisen
that an attractor can be described by its population of periodic
orbits, their related symbolic dynamics, and their linking
numbers.21 In three-dimensional cases, periodic orbits may be
viewed as knots,19 and consequently, they are robust with respect
to smooth parameter changes as far as they are not implied in
a bifurcation. Such properties allow the definition of topological
invariants under isotopy (continuous deformation).

The topological approach is based on the relative organization
of periodic orbits previously discussed. Once the periodic orbits
are extracted, one may then define a partition of the attractor
relying on the critical points of the first-return map (Figure 3).
In the case of our experimental data, periodic orbits are encoded
by strings of symbolsσn defined as

whereXn is the coordinate of thenth intersection of the chaotic
trajectory with a Poincare´ section andXC ≈ 0.12 defines the
critical point exhibited on the first-return map (Figure 3).
Afterward, we have to compute linking numbers for pairs of
extracted periodic orbits. This ambient isotopy invariant is
defined as follows.

Let R andâ be two knots defining a link L inR3. Let σ denote
the set of crossings ofR with â. Then the linking number reads
as

whereε is the sign of each crossingp with the usual convention;
that is

The linking number lk(R,â) of two periodic orbitsR andâ is
therefore the half of the algebraic sum of all crossings between
R andâ (ignoring self-crossings).

From experimental data, the linking numbers are counted on
plane regular projections of orbit pairs by using the third
coordinate to define the sign of the crossings. For instance, the
case of orbits 1 and 10 is displayed in Figure 4. This example
is very simple, but we may encounter more ambiguous cases
where oriented crossings are not so easily computed. Difficulties
arise when segments of two different periodic orbits are close
to tangency. In this case, spurious crossings may appear as
displayed in Figure 5. Such spurious crossings may come from
the smoothing applied on the data, since it is known that Fourier
transform may imply additional oscillations. Without this
filtering however, the situation would be worse due to spurious
crossings generated by noise. Consequently, we choose to
remove by hand the spurious crossings. Two cases of removal
are observed as displayed in Figure 6.

Crossings are considered as spurious if they correspond to
high-frequency oscillations in the signal, i.e., frequencies large
with respect to the frequency associated with the pseudoperiod.
In other terms, crossings between two strands may be considered
as spurious when the distance between the crossings is smaller.
In the case of Figure 6a, crossings are not taken into account

Figure 3. First-return map computed in the reconstructed phase space
from the experimental time series.

TABLE 1: Population of Periodic Orbits Extracted from the
Experimental Data and Their Linking Number a

(1) (10) (1011) (10111) (10110)

(10) -1
(101) -1 [-2]
(1011) [-2] [-3] [-4]
(10111) -2 -4 [-5] [-8]
(10110) [-2] -5 [-5] [-8] [-10]

a Values in square brackets have been obtained using the corrections
described in the text.

σn ) {0 if Xn < XC

1 if Xn > XC
(1)

lk(R,â) )
1

2
∑
p∈σ

ε(p) (2)
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since the relative positions of the two strands are the same. In
the case of Figure 6b, the first two negative crossings are not
considered as spurious, since the relative positions of two strands
are reversed and, consequently, the second negative crossing is

vanished by the positive crossing under an isotopy. This removal
procedure has been introduced by Lefranc and Glorieux22 and
used by Boulant et al23,24 on experimental data generated by a
laser system. With this procedure, we find that all linking
numbers may be predicted by a template defined by a linking
matrix reading as

whereMii ’s are equal to the number ofπ-twists of theith strip
and off-diagonal elementsMij (i * j) are given by the algebraic
number of intersections between theith and jth strips. The
template associated with the linking matrix of relation 3 is
displayed in Figure 7, accounting for the standard insertion
convention,25 which tells us that strips must be reinjected in
the bottom band from back to front and from left to right.
Explanatory details for such a topological characterization
procedure are extensively discussed in refs 11, 19, and 20.

3. Topology of a Reconstructed Model

It has been demonstrated that a set of ordinary differential
equations can be automatically reconstructed from a determin-
istic scalar time series (refs 12, 13, and 26-28 and references
therein), a process that is called global vector field reconstruction
leading to a model. As for a phase space reconstruction, the
model may be equivalently reconstructed by using delay
coordinates,13,29 derivative coordinates,12,26,27or also principal
components. Here, we use again derivative coordinates. Since
the embedding dimensiondE is equal to 3; as for the BZ reaction,
the global reconstructed model reads as

where the dynamical variables are the successive derivatives

Figure 4. Plane projection of a couple of periodic orbits encoded by
(1) and (10), respectively. The associated linking number is equal to
the half sum of the oriented crossings, i.e., lk(10,1)) -1.

Figure 5. A couple of periodic orbits whose segments are close to
tangency, implying spurious crossings.

Figure 6. Examples of spurious crossings that are removed, being
considered as artifacts. In (a), the relative positions of the two strands
at the beginning and at the end of the small interval are the same and
the crossings are not taken into account. Conversely, (b) corresponds
to a situation where the relative positions of the two strands are different;
one negative crossing is therefore counted, and the two close negative
crossings are not considered as spurious.

Figure 7. Template of the Belousov-Zhabotinskyi reaction extracted
from the experimental data.

Mij ) [0 -1
-1 -1] (3)

{Ẋ ) Y
Ẏ ) Z
Ż ) FS(X,Y,Z)

(4)

{X ) x(t) ) [Ce4+(t)]
Y ) x̆(t)
Z ) ẍ(t)

(5)
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The functionFS is written in the form

wherePp ) XiYjZk. The standard functionFS is approximated
by using a multivariate polynomial basis on nets27 which may
be built by means of a Gram-Schmidt orthogonalization
procedure.30 The algorithm requires the definition of reconstruc-
tion parameters which are (i) the dimensiondE of the embedding
space; (ii)Nq, the number of vectors on the net,

with i a time index; (iii)Ns, the number of vectors sampled per
pseudoperiod; (iv)Np, the number of retained multivariate
polynomials; (v)τw, the window size on which the derivatives
are estimated by using a sixth degree interpolation polynomial.
These interpolation polynomials are built, centered at each point,
by using the six nearest neighbors. Derivatives are then obtained
by analytically deriving these polynomials. The window size
τw is taken to be equal to 7 timesδt.

In practical applications, the choice of such parameters may
have a significant effect on the quality of the results.27 A
guideline for choosing a generally good driving vector is based
on an error functionEr according to

This error function is calculated by using absolute values for
computational efficiency.

Er may be understood as a relative error between the value
of the standard function directly evaluated from the time series
and the one obtained from its approximation. For a given value
of Nq, optimal values forNs and the number of polynomialsNp

are obtained by minimizing the error function. However, the
value ofNq at which the minimized error funtion passes through
a minimum or a local minimum does not warrant a correct
integration. Therefore, the search of a successful global vector
field reconstruction needs systematical trials.

In this case, excepted the measured variableX, which is here
defined as [Ce4+(t)], the two other variables cannot be directly
associated with any concentration since they are derivatives.

A good approximationF̃S of the functionFS is found with
the following values of the reconstruction parameters:

The reconstructed model is therefore found to be constituted
by a standard function with 56 terms. By integrating this
reconstructed model, whose coefficient spectrum{Kp} is
reported in Table 2, a plane projection of the chaotic attractor
may be obtained as displayed in Figure 8, where experimental
data are also superimposed. At first sight, experimental trajectory
and integrated trajectory seem to be in a good agreement at
least for low-amplitude oscillations (no large-amplitude oscil-
lations are observed with this reconstructed model).

Since it is possible to integrate the reconstructed model during
a long time, we now possess a large amount of pseudoperiods,
allowing an easy extraction of periodic orbits. The populations
of extracted periodic are then reported in Table 3. By using a
Poincare´ section, a first-return map is computed and three
monotonic branches are clearly evidenced (Figure 9), while the
first-return map associated with the experimental data only
exhibits two monotonic branches (Figure 3). The attractor
generated by the reconstructed model may therefore be splitted
into three strips whose topological properties are different
(Figure 10).

By counting linking numbers between couples of periodic
orbits (for instance, Figure 11), we found that the template
characterizing the reconstructed model is as displayed in Figure
10. Its linking matrix reads as

We then observed that all linking numbers between periodic
orbits extracted from the experimental data are in agreement
with the proposed template displayed in Figure 10. The template
associated with the reconstructed model is therefore compatible
with the one extracted from the data; that is, strips 0 and 1 are
identical, and an additional strip is identified on the reconstructed
template. Such a third strip cannot be exhibited from the data

FS ) ∑
i)1

Np

Kp Pp (6)

(X1,i,X2,i,...,XdE,i,ẊdE,i) (i ∈ [1,Nq])

Er )

∑
i)1

Nq

|Żi - F̃s(Xi,Yi,Zi)|

∑
i)1

Nq

|Żi|
(7)

{Nq ) 650
Ns ) 12
Np ) 56

(8)

Figure 8. Phase space projection obtained by integrating the recon-
structed model.

Figure 9. First-return map to a Poincar section for the reconstructed
model.

Mlow ) [0 -1 -1
-1 -1 0
-1 0 0 ] (9)
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since the number of revolutions on the attractors is not sufficient.
Indeed, the 4381 points used to compute the first-return map
of the reconstructed model are more numerous than the 246
points used for the experimental data. The reconstructed model

therefore allows one to exhibit the dynamical properties of the
experiment, which are not necessarily identified on the experi-
mental data.

4. Normal-Form Model

Arnodo et al7 have studied the bifurcations underlying the
abrupt transition to well-developed chaos in the BZ reaction.
They identified this bifurcation as a subcritical Hopf bifurcation.
Within the limits of experimental resolution of the control
parameteræ, this subcritical Hopf bifurcation is indeed located
in the vicinity of the homoclinic bifurcation associated with the
spiraling behavior observed in the phase portrait.

TABLE 2: Coefficients of the Two Reconstructed Modelsa

p i j k KpA KpB

1 0 0 0 -1.708 186 975 080 1× 10-7 1.171 616 357 575 4× 10-7

2 1 0 0 -1.082 449 006 678 2× 10-5 0
3 0 1 0 -6.649 382 802 416 2× 10-4 -8.148 626 498 228 9× 10-4

4 0 0 1 7.472 649 311 745 1× 10-3 2.371 674 921 655 7× 10-2

5 2 0 0 8.945 164 745 971 2× 10-5 2.372 138 851 847 1× 10-4

6 1 1 0 -7.716 014 511 823 1× 10-3 -1.212 971 083 614 4× 10-2

7 1 0 1 0.432 078 094 205 03 0.796 721 690 105 41
8 0 2 0 0.274 789 719 635 90 0.224 915 341 828 76
9 0 1 1 -5.601 779 100 789 7 -9.947 458 573 077 4
10 0 0 2 234.881 794 063 83 409.808 771 359 58
11 3 0 0 2.065 777 687 221 7× 10-3 2.002 252 650 014 9× 10-3

12 2 1 0 -0.140 495 471 546 96 -0.166 622 228 663 9
13 2 0 1 3.374 238 156 624 2 2.671 892 422 783 4
14 1 2 0 1.798 602 796 778 0 0.638 662 330 491 95
15 1 1 1 -121.504 674 673 87 -180.702 746 366 15
16 1 0 2 -101.488 728 185 530 -1540.385 580 911 7
17 0 3 0 48.264 655 408 453 56.113 495 795 329
18 0 2 1 -3427.640 773 001 3 -5121.448 339 046 1
19 0 1 2 62458.490 201 442 42637.604 489 078
20 0 0 3 -2 326 623.539 428 7 -3646 013.173 390 1
21 4 0 0 5.203 716 096 025 7× 10-3 -8.201 952 915 177 4× 10-4

22 3 1 0 -0.539 605 583 988 72 -0.116 175 027 338 1
23 3 0 1 1.988 753 931 569 8 -16.714 678 223 064
24 2 2 0 -6.869 955 063 464 7 -7.084 784 111 920 9
25 2 1 1 50.910 979 461 748 1013.523 585 530 0
26 2 0 2 -9342.892 606 663 9 -26 713.218 192 470
27 1 3 0 677.350 657 280 34 811.396 858 541 84
28 1 2 1 6598.375 757 315 5 12773.974 485 589
29 1 1 2 641073.354 476 63 1 199 836.568 426 2
30 1 0 3 -2 537 370.918 676 0 -3 620 760.529 813 7
31 0 4 0 992.541 145 877 01 4268.518 226 357 5
32 0 3 1 -280 511.515 085 74 -201 037.450 886 98
33 0 2 2 18 009535.588 376 27 769 813.500 315
34 0 1 3 91 541681.724 466 75 665 073.218 272
35 0 0 4 1134 214 625.8083 3 652 858 259.6129
36 5 0 0 -7.153 615 662 960 6× 10-3 -2.225 152 869 472 6× 10-2

37 4 1 0 0.120 299 671 304 51 2.114 487 908 692 2
38 4 0 1 -1.024 649 601 221 0 -35.242 597 786 874
39 3 2 0 37.036 366 775 158 7.315 786 068 703 4
40 3 1 1 -877.272 955 506 59 1845.787 009 850 3
41 3 0 2 13733.712 371 085 -8184.962 321 0523
42 2 3 0 433.687 147 638 48 -2157.457 197 375 5
43 2 2 1 34995.345 645 103 29 578.447 921 501
44 2 1 2 -410 624.975 269 34 -1 435 970.985 438 7
45 2 0 3 5 434347.553 349 4 -9 991 649.531 581 2
46 1 4 0 -34 704.993 652 519 -24 239.582 282 112
47 1 3 1 -699 100.319 549 30 -1 485 240.178 739 5
48 1 2 2 586736.444 632 55 12 411 611.651 104
49 1 1 3 478 828413.089 73 -1 690 372 404.382 2
50 1 0 4 2 322 108972.7087 -18 871 936 905.517
51 0 5 0 -914 180.792 998 57 -574 338.288 631 80
52 0 4 1 -58 290 300.849 396 -38 260 976.568 584
53 0 3 2 -954 968 572.374 42 508 357 655.862 26
54 0 2 3 -6 471 080 345.3770 -9 880 153 621.4250
55 0 1 4 68 494 316256.813 -486 273 515 173.86
56 0 0 5 1 858 295 965871.4 -6 966 010 723 383.8

a KpA for the low-amplitude model andKpB for the large-amplitude model.

TABLE 3: Population of Periodic Orbits Extracted from the
Phase Portrait Generated by the Low-Amplitude Model

(1) (210) (2010) (20021) (20210)
(10) (211) (2021) (20121) (21210)
(20) (1011) (2110) (20102) (21100)
(21) (2002) (2111) (20202)

(101) (2012) (2101) (20212)
(201) (2011) (2100) (20211)
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Rather than using a reduction of the complex original
chemical scheme, Arnodo et al31 have derived a 3D model as
the normal form of a triple instability. This normal form reads
as

where control parameters are fixed as follows:

Control parametersµ andν have a particular role later specified.
This system accounts for the interaction of the Hopf bifurcation
and of the homoclinic bifurcation previously mentioned. The

model (10) has two fixed points

In general, the origin displays a Hopf bifurcation whenµ ) ην
(η, ν > 0). For the chosen set of parameter values (in particular
η ) 1), the Hopf bifurcation at the origin is subcritical forµ )
ν > ν* with ν* ≈ 0.95. The Hopf bifurcation appears forµ )
1.3 and the homoclinic bifurcation forµ ) 1.505. The
homoclinic orbit satisfies Sil’nikov’s condition since

leading to a ratio ofF/λ ≈ 0.038, 1.
A chaotic behavior is obtained forµ ) 1.38 and the

corresponding attractor is displayed in Figure 12. A first-return
map is computed (Figure 13). Three critical points are exhibited
implying a generating partition defining four strips. Indeed, there
is a discontinuity atX3 since two strands of a chaotic trajectory
that undergoes on the fourth strip present five negative crossings
(Figure 14), while only three crossings are found between two
strands undergoing on the third strip. The disconstinuityX3

Figure 10. Template of phase portrait generated by the reconstructed
model.

Figure 11. A couple of periodic orbits encoded by (20) and (10),
respectively. The linking number lk(20,10) is found to be equal to-2.

{Ẋ ) Y
Ẏ ) Z
Ż ) -ηZ - νY - µX - k1X

2 - k2Y
2 -

k3XY- k4XZ - k5X
2Z

(10)

k1 ) -1 k4 ) -0.2

k2 ) 1.425 k5 ) -0.01 (11)

k3 ) 0 η ) 1

Figure 12. Phase space projection obtained by integrating the NF
model.

Figure 13. First-return map to a Poincare´ section for the NF model.

F0 ) |00 and F1 )
0 |- µ

k1

0
0

(12)

{-λ ) -1.083
F ( iω ) 0.041( i1.178

(13)
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therefore separates the third and the fourth strips. Periodic orbits
are then extracted up to period-6 included and encoded as
follows:

The parity of symbols are fixed to associate an even integer
with an increasing branch and an odd integer with a decreasing
branch. A certain set of linking numbers (reported in Table 4)
has been computed and found to be well predicted by a template
whose linking matrix reads as

The template is displayed Figure 15. It is found to be compatible
with the one extracted from the experimental data since strips
0 and 1 are linked in the same way. Nevertheless, even if the
model exhibits the same sequence of bifurcations implying the
fixed points, the phase portrait generated by the NF model seems
to be rather different than the one for the dynamics underlying
the experimental data. This may be easily seen by comparing
the plane projection of the phase portrait for the reconstructed

data (Figure 2) and the plane projection of the attractor generated
by integrating the normal-form model (Figure 12). Also, more
precisely, the experimental dynamics generates a two-strip
template (two monotonic branches in the first-return map), in
contrast with the NF model that generates a four-strip template.
Moreover, the reconstructed model, which accurately reproduces
the dynamics of the experimental data is found to be character-
ized by a template that is not compatible with the template
extracted from the attractor generated by the NF model. The
NF model does not therefore provide an adequate model to
describe the dynamics of the experiment. It is then rejected for
the reconstructed model.

5. Conclusion

The Belousov-Zhabotinskyi reaction is governed by a very
complex chemical kinetics, implying at least 20 species. A
reduced dynamics has been found to be described by a set of
seven ordinary differential equations. Nevertheless, it has been
shown that the asymptotic chaotic behavior may be embedded
in a 3D space and described by a set of three ordinary differential
equations. This reconstructed model has been validated by a
topological characterization in which the topological organiza-
tion of periodic orbits is synthesized in an object called a
reconstructed template. Indeed, the template generated by the
model is compatible with a template directly extracted from
experimental data. These templates are however not compatible
with the template of a so-called NF model. Although the NF
model succeeds in reproducing some important features of the
BZ reaction, it is, however, invalidated by its failure of
reproducing the topological organization of the data. An
advantage of the global vector field reconstruction technique
lies in its ability to directly generate models from experimental
data, without any prior knowledge of the mechanisms underlying
the dynamics. This technique has been here applied to the
reduction of a complex chemical kinetics. Also, as a result of
its ability to remove some amount of noise contamination, the
technique allows one to exhibit and characterize fine structures
hidden in the experimental data. The success of the technique
also provides strong evidence for the existence of deterministic
chaos in the BZ reaction, in a way not explored up to now.

Figure 14. Two segments of the chaotic trajectory encoded by 5
according to the partition exhibited by the first-return map present five
negative crossings, i.e., the strip 5 undergoes five negative half-turns.

TABLE 4: Linking Numbers Counted on Plane Projections
of Periodic Orbitsa

(1) (10) (30) (300) (301) (101) (500000)

(10) -1
(30) -1 -2
(300) -1 -2 -3
(301) -1 -2 -3 -4
(101) -1 -2 -3 -3 -3
(500000) -1 -2 -3 0 0 -3
(500001) -1 -2 -3 0 0 -3 0

a They are found to be equal to those predicted by the template
defined by the linking matrix (7) except for five of them which are not
retained due to the presence of segments close to tangency. Note that,
in this population, the symbol “5” only appears in period-6 orbits.

σn ) {0 if Xn > X1 ) -4.26
1 if X1 > Xn > X2 ) -11.74
3 if X2 > Xn > X3 ) -19.88
5 if X3 > Xn

(14)

MNF ) [ 0 -1 -1 -1
-1 -1 -2 -2
-1 -2 -3 -4
-1 -2 -4 -5

] (15)

Figure 15. Template of the NF model.
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Furthermore, a dynamics more complex than a trivial horseshoe
dynamics has been exhibited.
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